

Dual Channel Voltage Detector

Features

 Two Independent Voltage Detectors in One Package

• Highly Accurate: ±2%

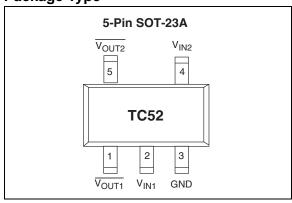
Low Power Consumption: 2.0μA, Typ.

Detect Voltage Range: 1.5V to 5.0VOperating Voltage: 1.5V to 10.0V

• Output Configuration: N-Channel Open-Drain

• Space-Saving 5-Pin SOT-23A Package

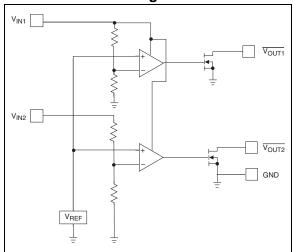
Typical Applications


- Battery Life Monitors and Recharge Voltage Monitors
- Memory Battery Backup Circuitry
- · Power-On Reset Circuits
- Power Failure Detection
- Delay Circuitry

Device Selection Table

Part Number	Package	Temp. Range	
TC52-xxxxxxxxxx	5-Pin SOT-23A	-40°C to +85°C	

Other output voltages are available. Please contact Microchip Technology Inc. for details.


Package Type

General Description

The TC52 consists of two independent low power voltage detectors in a space-saving 5-pin SOT-23A package. Typical supply current consumption is only $2\mu A$ at an input voltage of 2V. The voltage detection threshold settings are factory-programmed and guaranteed to $\pm 2\%$ accuracy. Threshold settings over a range of 1.5V to 5.0V are available. The TC52 is available with open drain (NMOS) configurations. Small size, high precision, low supply current, and low installed cost makes the TC52 the ideal voltage detector for a wide variety of voltage monitoring applications.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

 $\label{eq:local_$

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC52 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: T _A = 25°C, unless otherwise specified. Note 1.						
Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
V _{IN}	Operating Voltage	1.5	_	10.0	V	$V_{DF}(T) = 1.5 \text{ to } 5.0 \text{V}$
I _{SS}	Supply Current	_	1.35	3.90	μΑ	V _{IN1} = 1.5V
		_	1.50	4.50		$V_{IN1} = 2.0V$
		_	1.95	5.10		$V_{IN1} = 3.0V$
		_	2.40	5.70		$V_{IN1} = 4.0V$
		1	3.00	6.30		$V_{IN1} = 5.0V$
I _{IN2}	Input Current V _{IN2}	_	0.45	1.30	μΑ	$V_{IN1} = 1.5V$
		_	0.50	1.50		$V_{IN1} = 2.0V$
		_	0.65	1.70		$V_{IN1} = 3.0V$
		_	0.80	1.90		$V_{IN1} = 4.0V$
		_	1.00	2.10		$V_{IN1} = 5.0V$
V _{DET1} -	Channel 1 Detect Voltage	V _{T1} x 0.98	V _{T1} ±0.5%	V _{T1} x 1.02	٧	Note 2
V _{DET2} -	Channel 2 Detect Voltage	V _{T2} x 0.98	$V_{T2} \pm 0.5\%$	V _{T2} x 1.02	V	Note 2
V _{HYS1}	Hysteresis Range 1	V _{DET1} - x 0.02	V _{DET1} - x 0.05	V _{DET1} - x 0.08	٧	
V _{HYS2}	Hysteresis Range 2	V _{DET2} - x 0.02	V _{DET2} - x 0.05	V _{DET2} - x 0.08	V	
I _{OUT}	Output Current	0.3	2.2	_	mA	$V_{OL} = 0.5V, V_{IN1} = 1.0V$
		3.0	7.7	_		V _{IN1} = 2.0V
		5.0	10.1	_		$V_{IN1} = 3.0V$
		6.0	11.5	_		$V_{IN1} = 4.0V$
		7.0	13.0	_		$V_{IN1} = 5.0V$
ΔV_{DET} -/ ($\Delta T_{OPR} V_{DET}$ -)	Temperature Characteristics	_	±100	_	ppm/°C	-40°C ≤ T _{OPR} ≤ 85°C
t _{DLY}	Detection Time			0.2	msec	Time from $V_{IN} = V_{DET}$ - to $V_{OUT} = V_{OL}$

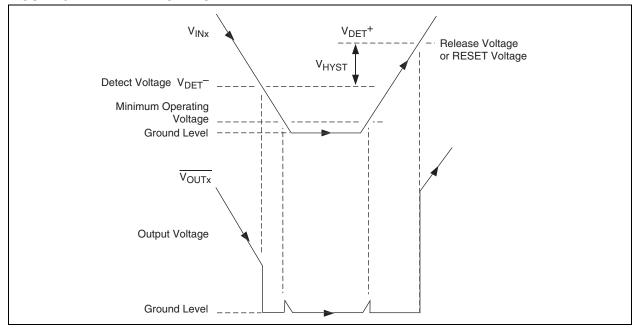
Note 1: Additional resistance between the V_{IN1} pin and the supply voltage may alter the electrical characteristics.

^{2:} V_{T1}, V_{T2} are the factory-programmed voltage detection thresholds.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

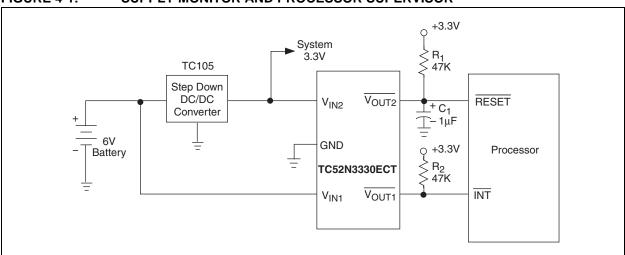

Pin No. (5-Pin SOT-23A)	Symbol	Description
1	V _{OUT1}	Detector #1 output.
2	V_{IN}	Supply voltage input, detect voltage 1.
3	GND	Ground terminal.
4	V_{IN2}	Detect voltage 2.
5	V_{OUT2}	Detector #2 output.

3.0 DETAILED DESCRIPTION

In normal steady-state operation and for either channel, when $V_{\text{IN}} > V_{\text{DET}}$ -, the output is high, see Figure 3-1. (In the case of the TC52N, this is an opendrain condition.) If and when the input falls below V_{DET} -, the output pulls down (Logic 0) to V_{SS} . Generally, V_{OUT} can pull down to within 0.5V of V_{SS} at rated output current and input voltages. (Also see Section 1.0, Electrical Characteristics).

The output, V_{OUT} , stays valid until the input voltage falls below the minimum operating voltage, V_{INMIN} , of 0.7V. Below this minimum operating voltage, the output is undefined. During power-up or anytime V_{IN} has fallen below V_{INMIN} , V_{OUT} will remain undefined until V_{IN} rises above V_{INMIN} , at which time the output becomes valid. V_{OUT} is maintained in its active low state while $V_{INMIN} < V_{IN} < V_{DET} + . (V_{DET} + = V_{DET} - + V_{HYST})$. If and when the input rises above $V_{DET} +$, the output will assume its inactive state (open-drain for TC52N).

FIGURE 3-1: TIMING DIAGRAM


4.0 APPLICATIONS INFORMATION

Pin 2 (V_{IN1}) acts as both the input to Voltage Detector #1, as well as the power supply input for the chip. As such, always assign V_{IN1} to monitor voltages between 1.5V and 10V. Failure to do this will result in unreliable detector operation due to an out-of-tolerance supply voltage. In high noise environments, it may be necessary to install a small input bypass capacitor $(0.01\mu F$ to $0.1\mu F$) from V_{IN1} to ground to minimize onchip power supply noise.

4.1 Battery and Main Supply Monitor

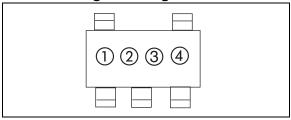

The circuit shown in Figure 4-1 provides both a processor supply monitor/reset function, as well as a low battery detect function. As shown, the TC52N3330ECT (N-Channel outputs) uses Detector 2 to monitor the system power supply rail. When the power supply is 10% below its nominal output voltage rating, the V_{OUT2} output is driven and held low. When the power supply voltage is above 3.0V nominal, V_{OUT2} is driven to an open circuit and the combination of R_1 and C_1 provides a reset time out delay. Detector 1 monitors the voltage on the main supply battery. A low battery condition is indicated when the battery voltage falls to 3.3V, at which time the main processor is interrupted to initiate a warning or system shutdown.

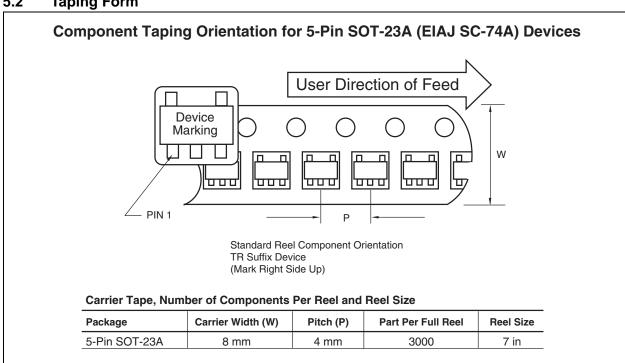
FIGURE 4-1: SUPPLY MONITOR AND PROCESSOR SUPERVISOR

5.0 **PACKAGING INFORMATION**

5.1 **Package Marking Information**

① represents N-channel indication and integer part of output voltage

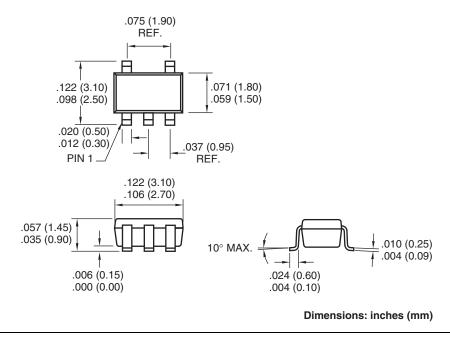
Symbol	Output	
<u>C</u>	CMOS	
<u>N</u>	Nch	


2 3 represents registration serial number

Symbol	Detect Voltage 1	Detect Voltage 2	
0P	4.5	2.7	

Note: Symbols for other custom voltages set prior to shipment.

④ represents assembly lot code


5.2 **Taping Form**

5.3 Package Dimensions

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SOT-23A-5

6.0 REVISION HISTORY

Revision C (December 2012)

Added a note to each package outline drawing.

•	1 7/

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART CODE TC52 N 45 27 E CT XX

Output Configuration:

N = Open Drain

Detected Voltage 1*:

Ex: 45 = 4.5V

Detected Voltage 2*:

Ex: 27 = 2.7V

Temperature:

E: -40°C to +85°C

Package Type and Pin Count:

CT: 5-Pin SOT-23A

Taping Direction:

TR: Standard Taping

*Other voltages are available. Please contact Microchip Technology Inc. for details.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

_ 4	\sim		•
4	_		-
	_	~	
١,	_	J	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620768020

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 **China - Nanjing**

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5118 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160

Fax: 81-66-152-9310

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366

Fax: 886-3-5770-955 **Taiwan - Kaohsiung**Tel: 886-7-213-7828

Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **Spain - Madrid** Tel: 34-91-708-08-90

Fax: 34-91-708-08-91 **UK - Wokingham**Tel: 44-118-921-5869

Fax: 44-118-921-5820

11/27/12